

AGI VESTFIELD

A 15-Year Journey into Robotic Welding

How to turn robots into money-making machines

A Bit About Me...

- Civil Engineering Graduate, 2012 U of M
- MBA Graduate, 2018 U of M
- Lean Manufacturing Coordinator, 2018
- Continuous Improvement Manager, 2019
- Operations Manager, 2019
- Love the outdoors, fishing, reading
- Powersports
- New dad

Presentation Overview

- Company Background
- Brief History
- Why Robots?
- Getting Started with Robotic Welding
- Challenges to Overcome before Robots will be Successful
- Maximizing Output
- Return on Investment
- Robotic Material Handling

Westfield Background

- Founded in 1950
- World's largest manufacturer of portable grain augers
- 162,000 ft² of production space
- 350+ production employees
- Day shift, night shift and weekend shift

The Facility

CNC Lasers

- CNC Saws
- CNC Lathes & Mills
- CNC Brakes
- Tube Mill
- Manual Welding
- Robotic Welding
- Powder Coat Paint Line
- Assembly
- Packaging
- Shipping

What do we build?

Swing Augers

- Used to get grain from a truck to a storage bin
- **Truck Loading Augers**
- Used to get grain from a storage bin to a truck

Production Facts

- A typical auger:
 - Assembled from over 600 different manufactured components
 - Built with over 4,200 inches of welding
 - ~40,000,000 inches of welding per year...

Robotic Journey Milestones

- 2006 Lean Journey Commences
- 2007 Powder Coat Line Installed
- 2008 Capacity for more welding
- 2009 1st Robotic Welder
- 2014 Robotic Frame Welding
- 2018 Fixtures Department is born
- 2021 Robotic Tube Welding
- 2021 First Non-Welding Robot
- 2022 14th & 15th robots

- People make mistakes
- People are unpredictable
- People are hard to find

Porosity

Cold Lap

Burn Through

Spatter

- Robots are consistent
- Robots are faster
- Robots produce a higher quality weld

- Robots are consistent
- Robots are faster
- Robots produce a higher quality weld
- Robots are easier to staff

Step 1: Pick the right part(s)

• Some considerations:

- Weld length **X**
- Accessibility \checkmark
- Warping 🗸
- Volume **X**
- Simplicity \checkmark
- Input parts ✓

VS

Step 1: Pick the right part(s)

• Some considerations:

- Weld length \checkmark
- Accessibility \checkmark
- Warping \checkmark
- Volume 🗸
- Simplicity \checkmark
- Input parts ✓

• Some considerations:

- Keep it simple
- If the part warps manually welding, it will warp more on a robot
- Make sure the designer, fabricator, and welder communicate
- Watch the welder manually weld it
- Outsourcing the fixture design/build is expensive and not as iterative

Step 3: Buy the right robot

- Some considerations:
 - Setup time is downtime unless the robot can keep welding
 - Footprint
 - Material flow
 - Robot reach
 - Payload
 - # of robots
 - Accessibility
 - Technical support

Step 3: Buy the right robot

- Some considerations:
 - Setup time is downtime unless the robot can keep welding
 - Footprint
 - Material flow
 - Robot reach
 - Payload
 - # of robots
 - Accessibility
 - Technical support

Step 3: Pick the right robot

- Some considerations:
 - Setup time is downtime unless the robot can keep welding ✓
 - Footprint \checkmark
 - Material flow **X**
 - Robot reach \checkmark
 - Payload 🗸
 - # of robots ✓
 - Accessibility \checkmark
 - Technical support \checkmark

- Don't rely on the robot... yet
- Some considerations:
 - Programming takes time
 - Expect some trial and error
 - Use the robot's output as supplementary

Challenges to Overcome before Robots will be Successful

- When the first attempt fails
 - Stick with it
- Employee resistance and negativity
 - Need early wins
 - Involve your employees
- Variability
 - Robots hate it so eliminate it

Challenges to Overcome before Robots will be Successful

• Developing inhouse experts

• Good robots require great people

• Training operators

• Need internal training

Troubleshooting

• Need problem solvers

• Spare parts

• Wear parts vs "I screwed up" parts

- Welding is the only value add process a robotic welder performs so maximize it
- Some considerations:
 - Touch sensing is a waste process, only use it when necessary
 - Perfect upstream processes if incoming parts are varying
 - Build robust fixtures
 - Design for manufacture

- Welding is the only value add process a robotic welder performs so maximize it
- Some considerations:
 - Touch sensing is a waste process, only use it when necessary
 - Perfect upstream processes if incoming parts are varying
 - Build robust fixtures
 - Design for manufacture

- Establish a robust process, train your operators and set a target
- Some considerations:
 - Repeatable work requires a repeatable process
 - Listen to the operators
 - Measure what matters
 - Arc on time vs OEE
 - Celebrate success

STEP 1: Unload Welded Part

STEP 3: Clamp the Parts

STEP 2: Put Parts Into Jig

Continuously monitor, improve, and train

• Some considerations:

- Hide the hammers
- Watch for the grinders
- Operators like to weld

• Part matching is critical

Weld Time of Part A >= Setup Time Part B Weld Time of Part B >= Setup Time Part A

• MKX 130 Lift Assists: 1 hr 15 min manual to 25 min robotic

• MKX 10 & 13" Transitions: 45 min manual to 17 min robotic

• MKX 10 & 13" Spout Heads: 35 min manual to 10 min robotic

- Consistent 3:1 return... per shift
- Higher quality
- Easier to staff
- Flexible

Annual salary of a welder: \$60k Cost of a robotic welding cell: \$100k to 250k Annual salary of a GL: \$40k Simple Payback: 100k to 250k/{(60,000x6)-(40,000x2)} = 0.36 to 0.89 years

Robotic Material Handling

- The next iteration?
- Removes human error
- Great for high variety, high volume
- Cobots vs Robots

Robotic Material Handling

- Fixture it if you can
- General labor is still easy to find

Summary

Eliminate variability

Maximize output

COMMITTED TO QUALITY AGI WESTFIELD

The #1 Grain Auger Manufacturer in the World